Volgenau School of Engineering
George Mason University
George Mason University Mason
George Mason University

Centers and Labs

Mason’s bioengineering laboratories and centers are well equipped to lead the development of new medical treatments and technology that could revolutionize health care. Take a look at the capabilities and infrastructure available in our laboratories.

Labs in Peterson Family Health Sciences Hall

Bioinstrumentation Instructional Laboratory

The new lab has been designed to promote classroom knowledge and skill development through hands-on learning activities. The lab will be equipped with working bench stations for bioelectrical activities, including data acquisition systems, function generators, power supplies, oscilloscopes, and computers. There will also be a collaborative area for discussion, demonstration, and instruction. Principal investigators: Laurence Bray and Shani Ross. Peterson Family Health Sciences Hall, 5000E.

Biomedical Engineering Design Laboratory

This new lab has been designed to promote translational projects, from ideas to manufactured prototypes. Students can use this space for their senior design projects and other collaborative work. The main lab will be equipped with individual 3D printing, soldering, and microscope stations, along with collaborative computer stations for both individual and team-based projects. Off the main lab there will be a 3D printing room for larger projects, a mechanical testing room, a machining/manufacturing room, and a biological testing room. Principal investigators: Laurence Bray and Shani Ross. Peterson Family Health Sciences Hall, room 5000.

Biomedical Imaging Lab

This lab conducts translational research using imaging to investigate pathophysiology and function. One overarching focus is the investigation of brain-body interactions through imaging. In particular, we are studying the interactions between the central and peripheral nervous system and the musculoskeletal system in a number of clinical conditions of major public health significance, such as chronic pain, stroke, spinal cord injury, and amputation.

This interdisciplinary group conducts pre-clinical research for developing new technology and translational research on human subjects. The group uses state-of-the-art ultrasound and laser instrumentation for developing new ultrasound, optical, and hybrid imaging techniques.

Our research has potential applications in noninvasive diagnosis, screening, and treatment monitoring for a number of diseases, as well as for understanding underlying mechanisms of disease. Principal investigators: Siddhartha Sikdar and Parag Chitnis. Peterson Family Health Sciences Hall, Room 3300.

Computational Biomedicine Laboratory

This lab focuses on the development and application of computational models and techniques primarily in the areas of biofluids and biomechanics. Biofluids applications center on the patient-specific image-based modeling of blood flow in the brain and cerebrovascular diseases, such as aneurysms and stroke.

In particular, we combine in silico models, clinical observations, biological and mechanical tissue data to understand mechanisms of cerebral aneurysm disease, to enhance risk assessment and patient evaluation through data-based statistical modeling, and to evaluate devices and minimally invasive procedures to treat brain aneurysms and ischemic strokes.

Biomechanics applications include the study of disorders of the oculomotor and musculoskeletal systems. In particular, we focus on quantitative measurement of extraocular dynamics in vivo using ultrasound, studying pelvic floor dysfunction using ultrasound imaging and biomechanical modeling, studying the biomechanics of the rat hind limb to improve understanding of neural control, and examination of the coordination of extraocular muscles and biomechanics of strabismus. Principal investigators: Juan Raul Cebral, Vicky Ikonomidou, and Qi Wei. Peterson Family Health Sciences Hall, Room 4000E/F.

Neural Engineering Laboratory

Our main goal is to develop prosthetic devices or parts of devices to help people with disabilities, in particular with pathologies of the nervous system. The second area we work on is neuronal cell cultures and biosensors. Principal investigators: Nathalia Peixoto and Parag Chitnis. Peterson Family Health Sciences Hall, Room 4000.

Sensorimotor Integration and Human-Machine Interfaces Laboratory

This lab is part of the Center for Adaptive Systems of Brain Body Interactions (CASBBI). A key aspect of brain-body interactions is manifest in behavior. Perhaps the most ubiquitous example of this is the perception-action interactions that underlie motor behavior.

These interactions are constantly updated in response to experience—a process known as sensory-motor adaptation. Sensory-motor adaptation is critical for functioning successfully in one’s environment. The research methods pursued in this lab are broadly applicable to assistive technologies where physical systems, computational frameworks, and low-power embedded computing serve to augment human activities or to replace lost functionality.

Investigators examine experience-dependent changes that occur in both the intact and disordered sensory-motor system. Areas of study include the processes by which this adaptation occurs, its mechanisms, and relationships to functional disability and recovery. One focus within this group is the sensory-motor adaptation that occurs with motor practice in individuals with chronic hemiparetic stroke.

Another focus is the development and evaluation of novel bionic technologies such as upper extremity prostheses and hybrid exoskeletons, using wearable imaging sensors for sensing the human user’s volitional intent.

Addressing these issues requires a multimodal measurement approach that includes quantitative measurements of motor performance, muscle activation patterns and intramuscular architecture in health and disease, and corticomotor physiology, as well as standardized clinical assessments of impairment and function. Principal investigators: Siddartha Sikdar and Michelle Harris-Love. Peterson Family Health Sciences Hall, Room 3300A.

Labs in Krasnow Institute for Advanced Studies

Biomedical Imaging Laboratory

This lab uses novel applications of ultrasound. Optics are developed for diagnostic imaging, tissue characterization, sensing and mapping neurological function, localized drug delivery, and noninvasive thermal therapy. We focus on bench-top and pre-clinical research with emphasis on the development of new technology. Principal investigator: Parag Chitnis. Krasnow Institute for Advanced Studies, room 165.

Computational and Experimental Neuroplasticity Laboratory

This lab focuses on the biochemical and biophysical mechanisms underlying memory storage in brain cells. We combine electrophysiology, optogenetics, and computational approaches to investigate how spatio-temporal patterns of input lead to strengthening or weakening of connections among brain cells. We develop computationally efficient software for modeling reaction-diffusion systems in order to investigate interactions among complex intracellular signaling pathways.

Computational models of single neurons are used to investigate how temporal stimulation patterns interact with dopamine to control neuronal memory storage. Experimental approaches include field and intracellular recording from brain slices to measure changes in electrical activity caused by temporal stimulation pattern, as well as expression of light sensitive ion channels to control neuron activity with precise timing.

A long-term goal is to understand the role of dopamine in the basal ganglia in order to develop new treatments for Parkinson’s disease and addiction. Principal investigator: Kim "Avrama" Blackwell. Krasnow Institute for Advanced Studies.

Computational Neuroanatomy Group/Ascoli Lab

This lab in the Center for Neural Informatics, Structures, and Plasticity aims to create a real-scale, biologically realistic computer simulation of an entire functional portion of the mammalian brain at the detailed level of individual cellular connections.

We are especially interested in neuronal architecture and the circuit underlying associative memory. The computational models we develop are open-source and entirely data-driven, linking each parameter to an experimental observation in the peer-reviewed scientific literature. Our research has been continuously supported by the National Institutes of Health and other funding agencies since the last millennium. Principal investigator: Giorgio Ascoli. Krasnow Institute for Advanced Studies, second floor.

Labs in the Institute for Advanced Biomedical Research

Biomaterials and Nanomedicine

This lab is being equipped for biomaterials development in the areas of tissue regeneration and the delivery of novel nucleic acid therapeutics. Degradable polymers are being designed that interact in a specific manner with cells of the immune system and with blood to control inflammation and promote tissue regeneration. Bioactivities are evaluated using proteomics, in vitro cell culture assays and animal model systems. Positively charged cationic polymers and distinct chemical conjugation strategies are being developed to effectively deliver mRNA to cells that translates into protein as antigens for vaccines or for functional protein replacement therapies.

A multidisciplinary team works from developing new compositions through characterization and screening studies, to identify those that can successfully translate to industry for clinical testing. Principal investigators: Caroline Hoemann and Michael Buschmann. Institute for Advanced Biomedical Research, 2nd floor.

Laboratory for Bio-Inspired Nanoarchitectures

This lab is used to design and synthesize new composite nanomaterials, combining structured DNA nanoparticles with macromolecular assemblies of proteins, peptides, and lipids.

We use these constructs to investigate fundamental questions about nanoscale organization of macromolecules with a focus on cell membrane molecular events, such as pathogen entry into cells and antigen recognition in B-cell activation. These new biomimetic nanoarchitectures also are used in the development of vaccines, delivery vehicles, and new materials for tissue engineering. Principal investigator: Remi Veneziano. Institute for Advanced Biomedical Research, 3rd floor.

Laboratory of Nanotechnology and Nanomedicine

The lab focuses on the synthesis and applications of a wide range of carriers at the nano and micro-size scale including polymeric and metallic particles, micelles, liposomes, carbon nanotubes, and metal-organic frameworks.

At the fundamental level, we aim to understand the mechanisms involved in the formation of such carriers to acquire high control in their physicochemical properties. At the applied level, we use those carriers in drug delivery, vaccines, imaging, biodefense, agriculture, medical devices, and microelectronics projects.

Since our research projects are highly translational, we collaborate closely with hospitals, industrial partners, federal research laboratories located in Virginia, United States, and across the world. Principal investigator: Carolina Salvador Morales. Institute for Advanced Biomedical Research, 1st floor.

Microfluidic Single Cell Analysis Laboratory in Engineering (m-SCALE)

Chimeric Antigen Receptor (CAR) T-cell based immunotherapy has recently demonstrated significant potential against advanced stage cancers and other diseases. However, these treatments are lengthy, expensive, and only available to a limited population.

We use a unique technique for synthesis and encapsulation of liposomes with tumor antigens, which can be delivered to stimulate t-cell expansion in vivo without the need to perform complex ex vivo genetic modification of cells.

In addition, we have also developed a robust lab-on-a-chip strategy to create hypoxic gradients within microfluidic devices to study mechanisms of tumor progression and acquisition of drug resistance. This platform also offers a novel and efficient way to perform pharmaceutical testing for personalized medicine. Principal investigator: Nitin Agrawal. Krasnow Institute for Advanced Studies.

Bioengineering Centers

Center for Adaptive Systems of Brain Body Interactions

The center’s researchers focus on transdisciplinary research questions of major public health and societal significance such as chronic pain, substance misuse and addiction, autism spectrum disorders, and mobility impairments.

Our goal is to develop improved clinical interventions and improved clinical outcomes for these conditions. The center brings together experts in neuroscience, physics, engineering, psychology, and rehabilitation to pursue convergent research involving the integration of knowledge across disciplines to uncover underlying neurobiological mechanisms of disability, to modulate them through novel technological approaches, and to develop measurement tools sensitive to changes resulting from the interventions.

The core methodological expertise is in multiscale neuromodulation and neuroimaging, human machine interactions, and sensorimotor integration and human movement. The core facilities include shared research instrumentation, core imaging facilities, shared wet and dry lab facilities on the Fairfax campus of George Mason University. Many of the center’s researchers have laboratory space in the newly opened Peterson Health Sciences Hall. The center director is Siddhartha Sikdar.

Center for Neural Informatics, Neural Structures, and Neural Plasticity

Researchers with the center, referred to as CN3, pursue fundamental breakthroughs in neuroscience by integrating computational and experimental approaches to neuroplasticity and neuroanatomy.

By bringing together faculty expertise in engineering, bioinformatics, and cognitive science, the center provides opportunities for cross training in multiple disciplines.

Researchers investigate the relationship between brain structure, activity, and function from the subcellular to the network level, with a specific focus on the biophysical mechanisms of learning and memory. The labs combine electrophysiology, behavior, microscopy, and genetics with supercomputers for analysis and modeling. The center director is Giorgio Ascoli.