Volgenau School of Engineering
George Mason University
George Mason University Mason
George Mason University

Neurotechnology and Computational Neuroscience

Neurotechnology and Computational Neuroscience investigate the most complex machine in the universe: the human brain.

We strive to understand the function of the nervous system across multiple scales, from molecular interactions through individual neurons, to large-scale neural circuits with real-world applications to neurological and psychiatric diseases, as well as next-generation artificial intelligence algorithms.

"Our lab designs devices that target neural disorders."

— Nathalia Peixoto, affiliate faculty in bioengineering

Our areas of expertise include:

Memory, dopamine and computational modeling

Parkinson’s disease is produced by the death of dopamine producing cells in the brain, whereas addictive drugs produce overly strong dopamine release. We are utilizing electrophysiology, optogenetics, and computational approaches to investigate the biophysical and biochemical mechanisms mediating the response to dopamine. Biophysically realistic, computational models of striatal neuronal networks investigate how dopamine depletion produces abnormal brain rhythms and oscillations. Computational models of single neurons investigate how temporal stimulation patterns interact with dopamine to control neuronal memory storage. Principal investigator: Kim "Avrama" Blackwell.

Giorgio Ascoli, professor of bioengineering

Giorgio Ascoli, professor of bioengineering, is developing technologies and models to investigate neural circuits from molecular to whole brain scales.

Neuroinformatics and computational neuroanatomy

The human brain is a network of one hundred billion tree-shaped cells communicating through one thousand trillion connections. The dynamic activity in this circuit gives rise to thoughts and emotions; its plasticity allows us to learn throughout a lifetime; and its complex architecture stores our memories and personality. Research in this area focuses on developing technologies and models to investigate neural circuits from molecular to whole brain scales. Principal investigator: Giorgio Ascoli.

Neural interfaces

This team investigates neural interfaces from the cellular level, for example designing novel sensors that can track electrical activity and neurotransmitters in the brain (in culture and in vivo), as well as designing methods to non-invasively modulate neural activity. A second thrust of the lab is on assistive technology: we are interested in designing devices and systems to help people with disabilities. This entails the design of novel robots and wearable sensors and actuators. Principal investigator: Nathalia Peixoto.

"Neurotechnology at Mason tackles the ultimate challenge: reverse engineering the brain to understand what makes us human."

— Giorgio Ascoli, professor in the Bioengineering Department and the Neuroscience Program